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Abstract
In recent years, web software development has gained significant prevalence. Con-
sequently, the resources and costs required for verifying the functionality of web
applications have also increased substantially. Thus, automation in the testing
process, such as test case generation, enhances testing efficiency and reduces testing
costs. Automatic test case generation employs gathered knowledge of the software to
create test steps without direct control by a tester.

In web software development, test generation is challenging as applications fre-
quently consist of multiple complex systems. Therefore, machine learning algorithms
have been implemented in test case generation to replicate the manual testing tradi-
tionally performed by humans. Recent research has created test cases by exploring
the application using search algorithms and directly converting the source code to
test cases utilizing language processing. However, previous work has not suggested a
generation framework for widely used test automation libraries and machine learning
algorithms.

This thesis proposes a framework for transmitting information, such as visible
elements and actions, between the machine learning algorithm and the software.
For the framework, two machine learning algorithms, Proximal Policy Optimization
(PPO) and Online Decision Transformer (ODT), are implemented to benchmark
search-based test generation performance. The algorithms optimize test steps for
achieving user-provided test objectives, such as logging into a website.

Results indicate that the framework can support the algorithms for exploration-
based test generation for web applications. The PPO can optimize the test steps
towards various test objectives. The ODT efficiently clones the behavior from collected
trajectories, for example, previously created test cases. This thesis also analyzes
solutions to address potential scalability challenges in the algorithms used, particularly
as the number of available actions increases in larger applications. Furthermore, the
future aim for these algorithms is simultaneous and rapid test case generation across
multiple applications.
Keywords Testing, Test Generation Framework, Machine Learning, Proximal Policy

Optimization, Online Decision Transformer
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Tiivistelmä
Web-sovellusten kehittämisen suosio on kasvanut viime vuosina, mikä on lisännyt
sovellusten testaamiseen käytettyä työmäärää merkittävästi. Testausprosessin työ-
määrän vähentämiseksi automaatiota on hyödynnetty esimerkiksi testitapausten
luomisessa. Testejä voidaan suunnitella sovelluksesta kerättyjä tietoja hyödyntämäl-
lä.

Testien automaattinen luominen web-sovelluksille on haastavaa, sillä sovelluk-
set koostuvat yleensä useista järjestelmistä. Koneoppimista on hyödynnetty testien
laatimisessa, koska algoritmit voidaan opettaa testaamaan sovellusta ihmisen ta-
voin. Viimeisimmät tutkimukset ovat käyttäneet sovelluksen tutkimiseen perustu-
vaa testien luontia ja tuottaneet testejä myös suoraan sovelluksen lähdekoodista.
Aikaisemmat tutkimukset eivät kuitenkaan ole ehdottaneet ohjelmistokehystä testi-
tapausten laatimiseen, jota voidaan käyttää yleisten testiautomaatiokirjastojen ja
koneoppimisalgoritmien kanssa.

Diplomityössä kehitettiin ohjelmistokehys koneoppimisalgoritmeja varten, mikä
mahdollistaa sovelluksen tilan seuraamisen ja toimintojen suorittamisen testattavassa
järjestelmässä. Kehyksen toiminta varmistettiin toteuttamalla Proximal Policy Opti-
mization (PPO) ja Online Decision Transformer (ODT) -algoritmit, ja vertaamalla
testitapausten luonnin tehokkuutta web-sovelluksessa. Algoritmien tavoitteena on löy-
tää parhaat testiaskeleet, jotka saavuttavat käyttäjän määrittelemän testitavoitteen.
Tavoite voi olla esimerkiksi kirjautuminen sovellukseen.

Tulokset osoittivat, että kehys pystyy tuottamaan testitapauksia web-sovellukselle
käyttämällä molempia algoritmeja. PPO-algoritmin avulla voidaan oppia testias-
keleet, jotka saavuttavat käyttäjän asettaman testaustavoitteen. ODT-algoritmi
puolestaan pystyy luomaan testitapauksia yhtä tehokkaasti käyttämällä kerättyjä
testitapauksia. Tulosten perusteella algoritmeja on jatkossa kehitettävä eteenpäin,
jotta niitä voidaan käyttää sovelluksissa, jotka sisältävät suuren määrän eri toimin-
toja. Lisäksi tulevaisuudessa on tavoitteena, että algoritmeja voidaan hyödyntää
samanaikaisesti ja tehokkaasti monessa eri web-sovelluksessa.
Avainsanat Testaus, Testitapausten luominen, Ohjelmistokehys, Koneoppiminen,

Proximal Policy Optimization, Online Decision Transformer
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1 Introduction
Testing is an integral part of the lifecycle of software development. To prevent defects
as early as possible, testing is often performed at multiple levels and different stages of
software development [1]. Accordingly, software testing has frequently been regarded
as a time-consuming and labor-intensive process. Thus, testing activities have been
estimated to account for up to 50% of software project costs [2]. These costs can
further increase when testing critical applications, such as safety-critical real-time
systems [3]. Testing critical systems, including a control interface in a vehicle, is
essential since a failure or malfunction could compromise user safety.

As a subset of software development, web development has become increasingly
prevalent in recent years, as demonstrated by the rapid growth in cloud computing
markets [4]. Subsequently, testing has become increasingly difficult as the amount and
complexity of web-based software grows. Web applications often require repetitious
testing on multiple platforms. To address the challenge, tests could be automated,
thus significantly reducing the time and effort needed for repetitive testing while
increasing its consistency [1].

However, test-automation has its limitations often demanding significant effort
to achieve benefits. Developing and maintaining tests not only requires time but can
also distract from any testing objectives by forcing the focus to be on the automation
rather than on executing the tests [5]. Moreover, test-automation does not replace
the more important task of manually exploring the application to find new bugs.
Rather than searching for new bugs, the purpose of test automation is to effectively
detect unintended changes in an updated system [1]. Eventually, repeating the same
test cases does not help find new defects.

To overcome these difficulties, research in test case generation has been increasingly
popular [6]. The generation process selects the actions similarly to a human manually
testing the application then combines the actions into a test case. By commonly
utilizing machine learning, test case generation aims to reduce the challenges of
test-automation by autonomously exploring the test environment and creating test
cases [7]. The generation approaches can be categorized by the test levels, such
as component and system testing, or the test types, including functional and non-
functional testing [1].

Another way to divide the testing approaches is access to and knowledge of the
internal structure of the application. White-box or structural test generation creates
the test cases using the structure or model of the software, such as source code
and documentation, and it often targets high code coverage [8]. Recent advances
in white-box test generation include using large language models by Tufano et al.
[9] to create test cases with improved readability by mining the source material of
the software. Black-box test generation often utilizes search-based methods without
knowing the software structure [8]. Black-box methods have been successfully used
in desktop [10], mobile [11], and web applications [12].

Despite vast research in test generation, a common framework for executing
multiple machine learning algorithms for test-automation has not been suggested.
Moreover, the recent approaches have not provided a simple way to expand the
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algorithm for numerous test-automation libraries and platforms. An ideal test
generation framework should be capable of covering multiple machine learning
algorithms and should be uncomplicated to scale up.

1.1 Objectives and Scope
This thesis aims to develop an easy-to-use framework for test generation to support
multiple machine learning algorithms. Two machine learning algorithms, Proximal
Policy Optimization (PPO) and Online Decision Transformer (ODT), are selected
and implemented for test generation to verify the functionality of the framework. The
thesis limits the algorithms to black-box test generation by exploring the application
by the test objective set by the user. In addition, generation is confined to GUI-based
web application testing. The scope has been selected for two reasons. Firstly, to
reduce required testing efforts in the growing domain of web application development.
Secondly, to develop black-box test generation methods since white-box testing of
web applications is only sometimes possible.

The test generation is evaluated in a benchmarking application designed to
resemble a fully featured online store. The secondary goal is to compare the algorithms
to understand the effectiveness of the selected black-box generation methods. With
the evaluation, the aim is to answer three research questions.

RQ1: How can machine learning models be optimized to generate script-based test
cases using a black-box approach?

RQ2: How does the performance of black-box test generation compare between the
selected machine learning algorithms?

RQ3: What is the coverage of the test cases generated by the selected machine learning
algorithms?

The questions aim to identify the factors affecting the test generation when using
the selected machine learning algorithms to generate test cases for web applications.
In addition, the thesis compares the test generation performance and coverage to
assess the benefits and potential areas for future improvement of both algorithms.

1.2 Structure
The rest of the chapters are structured as follows. The second chapter explains
the background of software testing, the theory behind machine learning algorithms,
and previous research on test generation. The third chapter describes the research
material and methods employed in the test generation approach. The fourth chapter
presents the benchmarking results, which include the training and the evaluation
of the test generation. The fifth chapter focuses on discussing the thesis results
reflecting the research questions. The sixth and final chapter concludes the thesis
and summarizes the results of the work.
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2 Background
The chapter will cover the background of software testing, the theory behind machine
learning related to the utilized algorithms, and previous research on test generation.
The background of testing, machine learning, and test generation is a broad topic.
Therefore, the chapter is limited to only fundamental and the most significant
information about the methods used.

2.1 Software Testing
Software testing is a process that ensures the software functions as intended and aims
to prevent any unexpected behavior [13]. The process consists of several parts that
not only verify the correct behavior but also validate the requirements set by users
and stakeholders [14]. In short, testing evaluates the quality of the system under
test (SUT) and reduces the risk of failure. Software failures can cause effects ranging
from insignificant, such as bad user experience, to significant, including injury or
death. Although testing reduces the chances of failure, it’s impossible to prove that
software is error-free in most cases [14]. Therefore, a good mindset for testing is to
find as many errors as possible [13].

Testing is an essential part of software development. A software development
lifecycle (SDLC) model describes the software development process on a high level [2].
SDLC models include different phases, such as planning, development, and testing,
that are organized into a systematic development process [15]. The relation and order
of these phases often varies between different models. However, testing should be
integrated into every development activity to ensure comprehensive quality control
[2].

The popularity of iterative SDLC models such as Scrum has continuously risen in
the last decade [16]. These agile development models divide the process into small
parts where the software is created in increments and improved by customer feedback
[17]. In Agile development, the incremental modifications and additions to existing
software require repetitive regression tests that have also been updated based on
the new requirements. Consequently, various levels of testing need to be considered
according to the areas impacted by these modifications.

2.1.1 Test Levels and Types

Testing can be divided into different test levels. Test levels describe the stages of
testing from individual components to the whole system [14]. Commonly used test
levels are component or unit testing, component integration testing, system testing,
system integration testing, and acceptance testing [1]. The component testing focuses
on the individual components, and the component integration tests the connections
between different units in the system. When moving to higher levels, system testing
and system integration testing assess the complete system and integrations between
system interfaces [14]. At the highest level, acceptance testing validates the system’s
behavior before deployment. Test levels are tied to different deployment phases and
related to activities within the SDLC [1].
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In addition to test levels, different test types are needed to describe the test process.
Testing can be categorized in many ways, but the usual types are functional and
non-functional testing. Functional testing evaluates the behavioral characteristics and
components of a system [14]. In contrast, non-functional testing covers other software
quality characteristics such as performance, reliability, and security [1]. Integrating
functional and non-functional testing approaches gives a more comprehensive and
robust testing process, ensuring the proper function of the systems and overall quality.

Testing can be also categorized as white- and black-box testing. White-box or
model-based testing uses the implementation and structure of the system to derive
the test cases [13]. White-box methods can utilize the software source code to test
while aiming to reach as high code coverage as possible. Black-box testing relies
only on the system specifications without knowledge of the internal structure of
the system [13]. In short, white-box testing is structured testing, and black-box is
specification-based testing [1].

Combining the test levels and types forms a robust testing approach to ensure
software quality and functionality in the SDLC. Testing should also focus on
previously tested software features if the software is updated. Therefore, testing
should include confirmation and regression testing. Confirmation testing ensures that
new or fixed features meet the specifications [14]. Regression testing confirms that
the features tested by confirmation tests in previous iterations are working correctly
[2]. The repetition of the test cases in regression testing makes it often a candidate
for test automation [1].

2.1.2 Test Automation

Test automation reduces the cost and time spent on testing by utilizing software
to perform the tests [18]. Automating tests has become a frequently used method
in agile software development. Automation enables rapid feedback to developers
and can improve the efficiency of test-driven development and acceptance testing
[19]. For instance, tests could be scheduled or automatically initiated after software
modifications to provide updates to stakeholders, who are the people affected by
the software project. Additionally, investing resources in building automated tests
improves test coverage even with fewer testers engaged in manual testing [20].

In test automation, the main questions are about which tests to automate and
selecting the methods for automating these tests. Planning which test to automate
occurs before the test design. Before choosing the strategy, the tester must consider
factors such as benefits, risks, and costs [5]. The SUT, testing tools, and the existing
testing process can affect the required effort to implement the test automation [21].
Therefore, planning is crucial before moving to test implementation.

Test automation can be viewed as an iterative process of test generation, definition,
and execution [5]. Test generation is the layer that manually or automatically designs
test cases. The generation layer is followed by the definition phase that implements
the tests. Finally, the execution layer runs the created test cases. When designing the
automated tests, the tester can consider the test types and levels. Test automation
can account for different test types, such as non-functional performance testing or
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requirement-based functional testing utilizing black-box test design [21]. Furthermore,
the tester could consider the test levels including integration and system tests [5].
For example, in web applications, testing could be split into user interface (UI)
and application programming interface (API) tests while taking into account the
functional and non-functional requirements.

The definition phase of the automation process involves the implementation of
the test cases. Multiple methods exist for developing the test script and setting the
test data. A basic form of test automation is linear scripting, where the manual test
steps, for example, clicking a button and typing text, are transformed into a script
and played back by the automation [21]. A tester can further structure a script.
In data-driven testing, the input data, such as generated user details, are usually
separated from the test step sequence, improving the reusability of the test cases
[21]. A keyword-driven testing technique often builds on the data-driven approach
by splitting the test steps into detailed keyword instructions that a control script
executes. For example, in web application testing, a keyword could be a function
that clicks a selected element. The control script uses the click keywords to navigate
in the web application.

Although test automation reduces the need for manual regression testing, the
stakeholders must consider the associated costs and challenges of implementing
automation. Building automated tests might require high investment costs, and
maintaining the test cases is often critical for the development lifecycle [18]. Testers
must develop and refactor test cases when changes occur in the SUT [22]. As a result,
the test cases require modification to accommodate the new requirements.

Another reason why tests must be regularly developed relates to the basic princi-
ples of software testing. While running existing regression tests aids in identifying
bugs caused by recent changes, it may leave new, unrelated bugs undetected [14].
In short, the testers must create new tests to find new bugs. As these challenges
raise costs for test automation, the amount of research for tackling the challenges has
increased over the years [7]. As a result, machine learning methods have garnered
significant interest in automated testing [8].

2.2 Machine Learning
Machine learning is a subfield of artificial intelligence (AI) that focuses on problems
that are particularly challenging to encapsulate within human-designed algorithms
[23]. Machine learning can be described as a process where a dataset is collected,
and a statistical model is built from the dataset [24]. The model-building process is
called learning since the model is learned from the collected dataset. When learning
is complete, the statistical model is used to solve the initial problem, for example, by
estimating values.

A dataset can be considered a collection of data points representing text doc-
uments, signals, images, and numerous other types depending on the application
domain [25]. Many of the machine learning methods try to create an estimate for a
quantity of interest using data points. Therefore, the properties of the data point
can be divided into different groups, for example, features and labels. Features are
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the properties of the data that are easy to measure or compute, and labels are the
high-level properties that the machine learning algorithm tries to predict [25]. When
forecasting housing prices, a couple of features can be the house size and location.
The label is then the housing price.

After collecting a dataset, the next crucial step in training a machine learning
model is selecting an appropriate learning method. The methods can be classified
by the type of supervision and how the features and labels are used. [26] Different
methods are used for different kinds of tasks, such as classification and regression
problems [27]. Machine learning can also be utilized for learning the best policy,
which is the strategy for decision-making [28].

2.2.1 Types of Machine Learning

The learning process of machine learning can be categorized into four different
types: supervised, unsupervised, semi-supervised, and reinforcement learning [24].
In supervised learning, a dataset has features that have been associated with a label
[28]. Therefore, the dataset can be thought of as a collection of labeled examples
{(xi, yi)}N

i=1 where each element xi in N is called a feature vector [24]. In short, the
target value is known for each data point. Supervised learning is commonly applied
to regression and classification including tasks such as spam filtering [26].

In unsupervised learning, the dataset is a collection of unlabelled examples
{(xi)}N

i=1 [24]. Since each feature vector’s labels are unknown, the model must find
patterns and structures in the data without explicit guidance from labeled examples.
Unsupervised machine learning can be used for clustering, which groups the data
points based on the feature vectors [26].

Supervised and unsupervised learning are not entirely separated; their bound-
aries can be blurry. Many machine learning techniques can be utilized for both
tasks interchangeably [27]. Sometimes, supervised problems can be converted to
unsupervised problems and vice versa. Other variants exist, such as semi-supervised
learning, where the dataset contains labeled and unlabeled data points [24]. Overall,
the categories are not strictly defined, but they represent different approaches.

2.2.2 Reinforcement Learning

Reinforcement learning stands out from supervised and unsupervised learning since
it employs a learning agent. The agent makes choices in a particular environment to
reach a defined objective. The objective is often the desired outcome, such as finding
as many bugs as possible, when the agent interacts with the environment. While
interacting with the environment, the agent senses the state of the environment and
selects an action based on the learned strategy for decision-making, also called a policy
π [28]. A state describes the possible configuration of the system or environment.

Fundamentally, the agent tries to capture a real-world problem by observing the
state, selecting an action, and optimizing the agent’s behavior toward the objective
described by a reward signal. The reward signal assesses how successfully the objective
is achieved. The interaction is called a Markov decision process (MDP), which is
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displayed in Figure 1. An MDP models a decision-making process in which the
optimization of the policy is referred to as learning or training [28].

AGENT

ENVIRONMENT

REWARDSTATE

St Rt

St+ 

Rt+ 

ACTION

At

Figure 1: Markov decision process [28]

The agent observes the system state St as a vector of features [24]. In the context
of web applications, the feature vector could include binary flags of the visibility of
website elements. Unlike other machine learning methods that use labels, RL relies
on a reward signal Rt, aiming to maximize the reward by selecting the best possible
action At in a given state [28]. Similarly to supervised learning, reinforcement
learning aims to create an optimal policy [24]. In contrast, the optimal step in RL is
determined by trial and error in a dynamic environment. Therefore, a finite MDP
creates a trajectory of states, actions, and rewards.

S0, A0, R1, S1, A1, R2, ... St−1, At−1, Rt. (1)
In reinforcement learning the agent aims to maximize the sum of the rewards

collected in a trajectory. A reward discounting can be added to increase the preference
of current rewards compared to the future rewards [29]. The return of of a trajectory
is then

Gt = Rt+1 + γRt+2 + γ2Rt+2 =
∞∑︂

k=0
γkRt+k+1, (2)

where γ is called a discount rate. When the discounting factor is closer to one, the
agent is more patient to wait for future rewards. When reducing the factor towards
zero, the future rewards are viewed as more insignificant [29].

In an MDP, the agent makes decisions based on the expected return from a state,
which indicates the advantage of transitioning to that state. The estimations of
the expected return can be achieved using a value function under a policy π [28].
The policy maps the probabilities of all possible actions to each state. It answers
a question of π(a|s), which denotes the probability of an action given a state. The
state-value function is then
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vπ(s) = Eπ[Gt|St = s] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓St = s

]︄
, (3)

where Eπ denotes the expected value at any time step t when the agent follows policy
π [28]. Furthermore, the function can be expanded into actions. The expected return
can be calculated using an action-value function

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓St = s, At = a

]︄
, (4)

which depends on an action taken in a given state using a policy [28]. The value
functions vπ(s) and qπ(s, a) can be estimated by exploring the environment. Simply
by keeping the average return of the visited states, the average will converge to the
state value vπ(s) when the state visitation count approaches infinity [28]. In general,
finding the value function often requires dynamic programming, which recursively
breaks the problem into smaller sections and calculates the optimal solution of the
sections [29]. Importantly, the objective is to find optimal policies that lead to the
highest expected value. The optimal policies share the same state-value function

v∗(s) = max
π

vπ(s) (5)

and also the same optimal action-value function

q∗(s, a) = max
π

qπ(s, a) (6)

for all states and actions in the state [28]. One of the algorithms for estimating the
optimal action-value function is Q-learning defined by

Q(St, At)← Q(St, At) + α
[︃
Rt+1 + γ max

a
Q(St+1, a)−Q(St, At)

]︃
. (7)

Here, Q(St, At) estimates q∗(s, a) and α is the learning rate [29]. The algorithm
selects actions from the Q(St, At) and updates the function in each iteration [28].
The function Q(St, At), representing the collected values for state-action pairs, can
be stored in a two-dimensional lookup table called a Q-table.

2.2.3 Policy Gradient Methods

Sometimes, it is not feasible to learn the policy by memorizing the values of all the
states. The state-action tables required for calculating value functions, which might
also include transition probabilities to states, are size O(|S||A|) [29]. Here, S is all
possible states called a state space, and A is all possible actions called an action
space. For instance, if a feature vector contains ten binary flags and action space
includes ten actions, the table size for storing the values for state-action pairs is
210 ∗ 10 = 10240. The sizes will rapidly increase with larger states and actions. The
tables are often sparse, containing many undefined state-action pairs. For larger
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state and action spaces, even the tables with infrequently defined values become
excessively memory-consuming [29].

To resolve this problem, it’s not necessary to consult a value function for the
action selection. Instead, it’s possible to learn a parameterized policy for the action
selection and use the value functions only to learn the policy parameter vector θ [28].
The learning is possible with an optimization method, such as a gradient ascent,
which aims to maximize the total reward input. With policy gradient methods the
parameter vector is optimized by executing the policy and observing the return.
In gradient ascent, each of the parameters is updated in increments while moving
towards the maximum total reward value [29]. The update equation is expressed as

θt+1 = θt + α∇Ĵ(θt), (8)
where θt denotes the vector of policy parameters at iteration t, α is the learning
rate, and ∇Ĵ(θt) signifies the estimated gradient of the performance function J with
respect to θt [28]. The equation describes the update rule for the policy parameters
using gradient ascent to maximize the performance measure. The policy gradient
methods often use the expected return as a performance measure [29].

The policy gradient methods use commonly stochastic policy π(a|s, θ), which
specifies the probabilities of actions taken in a given state [28]. The policy is dependent
on the policy parameter vector. In discrete action spaces, a frequently used method
of converting the parametrized numerical preferences into action probabilities is a
soft-max function

π(a|s, θ) = eh(s,a,θ)∑︁
b eh(s,b,θ) , (9)

where h(s, b, θ) is the numerical preferences [28]. Action preferences can be parametrized
with methods such as neural networks where the vector θ contains network weights.

The benefit of a stochastic policy is that it enables a transition from exploration to
exploitation. The transition means switching from probability-based action selection
to selecting only the best actions [28]. In a discrete action space where only one
action is selected, the action can be sampled from categorical distribution. During
the learning process, the policy often exhibits a progressive shift towards determinism
focusing more on exploitation. Stochasticity is also possible in continuous actions by
sampling a normal distribution and controlling the mean and variance [30]. Balancing
exploration and exploitation remains an open problem in reinforcement learning.
Multiple algorithms have been developed in response to the challenge, including
ϵ-Greedy, Simulated annealing, and Probability matching [31].

2.2.4 Feedforward Neural Networks

Artificial neural networks (ANN) are used for non-linear function approximation,
for example, in the case of a value function [28]. A feedforward neural network,
also known as a multi-layer perceptron (MLP), is the basic artificial neural network
architecture [27]. The structure of the network consists of layers of nodes or neurons.
The number of neurons in a layer can vary, and deeper networks with more layers
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lead to what is known as deep learning. The information flows through the layers
from the input layer through hidden layers and finally reaches the output layer, hence
the name feedforward [27]. Each neuron in a layer has direct connections to the
neurons of the subsequent layer. An example of a feedforward neural network is
displayed in Figure 2.

Input Layer ∈ ℝ3 Hidden Layer ∈ ℝ4 Output Layer ∈ ℝ2

Figure 2: Example of a feedforward neural network with one input, output, and
hidden layer.

In a feedforward neural network, each connection between neurons includes a
real-value weight, which is adjusted during the learning process [28]. These weights
are adjusted based on the error of the output compared to the expected result. The
neuron can be a linear function

f(x; w, b) = xT w + b, (10)

where x is input vector, w is weight vector and b is a selected bias [27]. w and b
belong to the policy parameters θt. Typically, a non-linear activation function such as
rectifier nonlinearity or logistic function is used to produce the output of the neuron
[28]. In the final layer, the neurons form a chain of functions f(x) = f (3)(f (2)(f (1)(x)))
[27]. An optimization method such as the gradient ascent is used to update the
policy parameters in θt. The learning process typically uses a technique called
backpropagation with the optimization method [28]. The loss is determined by
progressing forward in the network, that is, by forward propagation. The loss can
be then used to calculate the gradients using the chain rule from the output layer
backward to the input layer [27].

2.2.5 Transformer Model

The transformer model, introduced by Vaswani et al. [32], is a type of neural network
architecture that is commonly used for sequence transduction tasks such as translation,
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text summarization, and question answering [33]. The transformer architecture
allows for more significant use of parallelization due to attention mechanisms, which
enables the model to process different parts of the input data simultaneously [32].
Consequently, transformers are highly scalable and can be trained on large datasets.
In addition, attention allows focusing on different parts of the input sequence,
meaning that the dependencies on longer inputs can be efficiently connected [32].
The transformed model is displayed in Figure 3.

Input

Embedding

Inputs

Feed

Forward

Feed

Forward

NX

NX

Output

Embedding

Multi-Head

Attention

Add & Norm
Add & Norm

Add & Norm

Add & Norm
Add & Norm

Masked

Multi-Head

Attention

Multi-Head

Attention

Outputs

(shifted right)

Output

Probabilities

Positional

Encoding
Positional

Encoding

Softmax

Linear

Figure 3: Transformer model introduced by Vaswani et al. [32]

At its core, the decision transformer model is based on an encoder-decoder
structure. The encoder and decoder function is usually done by having the encoder
extract a fixed-length vector representation from the input sequence, and the decoder
translates the vector representation into a correct variable-length output sequence
[34]. In the transformer model, the input and output sequences are first transformed
into continuous token vectors, into which the positional information of the token
locations is embedded[32]. The input sequence is then moved to the encoder layer and
the output sequence to the decoder layer. The encoder layer consists of a stack of N
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identical layers, each containing two sub-layers, a multi-head self-attention mechanism,
and a position-wise fully connected feed-forward network [32]. The decoder layer
includes N identical layers but also has an extra attention layer for the encoder
output. There are also additional residual connections and layer normalization after
each sub-layer inside the encoder and the decoder. The decoder also uses masking
and output embedding offsetting to ensure that the predictions are made only from
the preceding data [32]. The model outputs the next-token probabilities using a
Softmax layer.

2.3 Test Generation via Machine Learning
In recent years, the methods of improving testing efficiency and automating the
testing process have been a frequent research topic. Hence, multiple machine learning
solutions and tools have been created to support the testing process. The most
popular research areas have included test case design, evaluation, prioritization, and
refinement [6]. The generation phase of test automation has been one of the most
explored topics in software testing [7]. The methods often utilize machine learning
in transforming the collected paths and data to test cases [8].

The different approaches can be categorized into black-box and white-box test
generation. Both methods are frequently used in areas such as system, unit, and
GUI test generation and different platforms such as mobile and web applications
[8]. Black-box methods often employ exploration and stochastic testing to generate
the test steps [8]. In stochastic testing, the difference from traditional deterministic
scripts is the probability of actions. Stochastic testing creates a probabilistic model
of the SUT and uses the model to produce the test steps [35]. White-box methods
use software-related information, such as the codebase, to build the test cases [7].
Recent advancements in large language models and language processing have led to
new approaches in white-box test generation [9].

Although both test-generation approaches have been thoroughly explored, a
framework for generating tests that can run multiple machine learning algorithms has
not yet been suggested. Particularly in black-box test generation, the algorithm often
needs information on the action and states of the SUT. In addition, the information
on the reached states could benefit white-box generation.

2.3.1 Test Case Generation Approaches

The simplest methods in black-box test generation include random testing [7]. Ran-
dom testing creates inputs by randomly sampling the program’s input space and
using the resulting trajectories to build error-revealing test cases [36]. Random
testing is suitable when the source code or other documentation is unavailable. Vari-
ants of random testing have been created to enhance the performance, including
feedback-directed and adaptive random testing [7]. In feedback-directed testing, the
test cases are generated or adapted based on feedback from prior test executions to
improve test effectiveness [37]. Arteca et al. [38] used feedback-directed random test-
ing for asynchronous APIs to solve challenges in determining callback expectations.
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Adaptive random testing differs from feedback-directed testing. Adaptive methods
ensure that the created test cases are evenly distributed across the input domain
rather than at random, enhancing the likelihood of finding defects [7].

Another black-box generation method, which is related to random testing, is
search-based testing. The search-based testing uses optimization methods to search
the test steps that maximize the test objectives and minimize the test cost [39].
The searching concept relies on having a fitness function directed towards a testing
objective, such as maximizing code coverage. The algorithms used in the search
use evolutionary techniques such as mutation and machine learning agents [40, 41].
Alshahwan et al. [42] used a search-based method for web application testing by
mutating the input and using a heuristic to pick the best option.

Machine learning has been increasingly applied to the test generation process
and has shown efficiency improvements [8]. Yasin et al. [43] have created a test case
generation tool with Q-learning using states and an external heuristic to select the
best action. Recently, search-based methods have been combined with Curiosity-
Driven Q-learning by Zheng et al. [44] and Pan et al. [45] with approaches aiming to
maximize code coverage. Curiosity-driven methods achieved complex test trajectories,
higher code coverage, and improved failure detection rate compared to traditional
search-based methods [44]. Storing the policy in simple Q-tables might limit the
state and action space size. Therefore, function approximations, such as neural
networks, have been used in state exploration techniques. For example, Li et al. [46]
used human interaction traces to imitate the user’s behavior in the application by
training a deep neural network (DNN) model.

Some test generation methods go beyond exploring the application without
knowledge of the software. White-box or model-based test generation and symbolic
execution use the codebase for building the test cases. White-box test generation
derives the test cases from a formal model that describes the system’s behavior
or specifications [7]. The formal models have various ways to describe the system,
including scenario, state, and process-oriented notations [7]. Symbolic execution
differs from the model-based approaches. Symbolic execution is a software analysis
technique that operates on program code, treating its inputs as symbolic values rather
than concrete ones [7]. The method allows for the exploration of multiple execution
paths simultaneously, enabling the identification of possible code vulnerabilities,
bugs, and undesired behaviors under various input conditions. Besides White-box
generation and symbolic execution, natural language processing (NLP) using machine
learning methods has been a prevalent approach for defining test cases. The NLP
methods will be in section 2.3.2.

Machine learning has been used widely in test generation for different testing
levels, types, and platforms. Studies have broadly used white and black-box methods
for end-to-end testing [8]. End-to-end tests validate the entire workflow of a system,
from individual components to system level, ensuring comprehensive coverage of
the system’s functionality. State-based GUI test generation has been a popular
research topic in end-to-end testing. Evaluation platforms have mostly covered
mobile applications but also included web applications [8]. Despite the evaluation
environment, the common goal for the test generation algorithms has been increasing
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the test coverage metrics [8].

2.3.2 Natural Language Processing in Test Generation

Natural Language Processing (NLP) is a subfield of AI that focuses on enabling
computers to interpret and respond to a human language [47]. In test case generation,
NLP techniques could be advantageous to understand the testing needs and the
context from sources such as the requirements, codebase, and documentation. As a
result, NPL algorithms have been used in black-box and white-box testing [48, 49].

In black-box testing, Khaliq et al. [48] used a language transformer to translate
UI descriptions into test cases. Although black-box generation can be successful, the
recent methods have focused on white-box testing while gathering more information
from the application to increase the test coverage [49]. The methods have used large
language models (LLM). LLMs represent deep learning architectures, often utilizing
transformer models trained with large datasets [50].

Schäfer et al. created a unit test generation tool called Testpilot that utilizes
LLMs for automatic test generation [49]. Testpilot uses a generative pre-trained
transformer (GPT) language model Codex to generate unit tests for JavaScript
testing framework without necessitating further training or few-shot learning from
existing test cases [49]. The generation process of the Testpilot tool is described in
figure 4.
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Figure 4: Test generation process used in Testpilot [49].

Testpilot works by forming a prompt for the Codex model. In the given prompt,
the Codex model not only receives the source code but also harnesses information from
extracted snippets, comments, and the signature of the software contained within
the documentation. Furthermore, failed tests are corrected using a modified prompt,
which tries to fix the invalid tests. When implemented for JavaScript, Testpilot was
evaluated on 25 npm packages with 1,684 API functions [49]. The tests produced for
the functions reached up to 93.1 % statement coverage with highly unique tests [49].
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Crucially, LLMs can produce test cases that are more human-readable compared to
conventional white-box methods since the models have been trained with human
language and codebases [49].

A similar solution to Testpilot, Tufano et al. [9] presented Athenatest, an approach
using a transformer model to create unit tests. Compared to Testpilot, Athenatest is
trained with actual Java methods combined with developer-written test cases. For the
training phase, a large dataset of mapped test cases has been drawn from open-source
Java projects on GitHub [9]. The process is shaped as a sequence-to-sequence learning
task and undergoes a two-phase training procedure with training large code corpus
and finetuning for test generation [9]. The trained model can then be used to create
test cases for the focal methods. When used for Java test generation, Athenatest
reached similar test coverage compared to EvoSuite, a Java unit test generation tool,
with improved readability and efficacy of its generated test cases [9].

2.3.3 Challenges of a Test Oracle

Automating the testing process, from test generation to execution, is a complex
problem with several challenges that must be overcome. One of the challenges
lies in the principle of testing, which is that exhaustively testing software is only
sometimes possible [14]. Hence, there are no guarantees that the software is free of
defects. Therefore, the test design process aims for high coverage of the functional
and non-functional requirements.

If the target is to automate the complete testing process, creating the test steps
is only part of the challenge. During the generation, the automation process must
validate the correct behavior of the system. Verification of the outcome is called an
oracle problem, and it has been a major part of test generation research [6]. The
oracle problem is complex since correct behavior is not always well-defined and easily
determined.

Test oracle is a significant part of the costs in test generation [7]. Even if the
test generation is automatic, determining the outcome might require manual labor.
For this reason, test oracles have been created for specific applications. Test oracles
have often used supervised methods to determine the test verdict or the predicted
expected output of the system [8]. The test verdict describes whether the test steps
cause a passed or failed result.

Furthermore, NLP algorithms have been leveraged as the test oracle. Dinella
et al. [51] proposed a transformer-based test verdict, which leverages two primary
components: a classifier to discern whether a developer-intended exception should
be raised and an assertion ranker to rank and select the most appropriate assertions
based on the context. Even though progress has been made with LLMs in approaches
such as by Schafer et al. [49], the test verdict often depends on the source code
assertions. A generic test oracle for black box testing that determines the outcome
for produced test cases has not yet been proposed. A black-box test oracle would be
particularly beneficial for web applications and GUI testing.
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3 Research Material and Methods
The chapter presents the approach to test generation, which includes the creation
of a test generation framework, the implementation of the algorithms, as well as
the training and evaluation of machine learning models. Additionally, chapter
explains the benchmarking setup for evaluating algorithm performance in two test
scenarios. Overall, the chapter offers a method for employing reinforcement learning
and sequence modeling in test generation for large-scale web applications.

3.1 Approach to Test Generation
The selected approach for the thesis is search-based test generation. Search-based
testing formulates the input generation as an optimization problem [52]. From a
set of inputs, the objective is to find the ones that lead to the desired objective
[8]. The thesis examines the black-box search approach for the generation method
since white-box testing is only sometimes possible for complex web applications.
For instance, the source code might be unavailable or unsuitable for the generation
algorithm. The approach follows stochastic testing by creating a policy with action
probabilities and generating test steps by sampling from the distribution. The steps
for the generation approach are presented in Figure 5.
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Figure 5: Test generation approach used in thesis

The search-based test generation often relies on a fitness function [52]. The fitness
function describes a generation goal, which could be as simple as finding exceptions
in execution [53] or aiming for as high code coverage as possible [45]. The thesis
approach utilizes a user-defined reward signal to describe the testing objective, which
can be formulated based on the software requirements. The reward signal allows the
user to control the direction of the generation.

In the selected approach, the generation requires a pre-defined state and action
space to use a policy gradient algorithm [54]. In the context of websites, the state
can be a feature vector of website elements, and the actions can include a set of
possible steps such as click and type. After selecting the state and action space,
the algorithm can train a policy, which is evaluated by generating the test steps by
sampling actions in the environment. The user can refine the selected reward signal,
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states, and actions if the policy fails to produce the desired outcome. Furthermore,
the algorithm has training hyperparameters that can be tuned for better performance
[55].

The previous research has covered several machine learning techniques in different
state-based GUI applications. However, most research has focused on mobile testing
and doesn’t use test libraries designed for web application testing [8]. Web applications
present testing challenges due to their potential to be accessed across various devices,
resolutions, and browsers. Therefore, the thesis focuses on demonstrating the
generation of web applications using an open-source test automation library.

3.2 Test Generation Framework
The machine learning algorithm requires a connection to a test library to generate
test steps. Therefore, the thesis aims to create a framework for test generation
and benchmark machine learning algorithms using the developed framework. The
framework outputs keyword-based test steps that a test automation library can use.
The created tests can then be used in regression testing or templates for creating
more complex keywords. Test generation can reduce the required time for manual
test development and aid with exploratory testing.

The test generation process is described in Figure 6. The approach consists of four
parts: the system under test (SUT), the test library, the integration layer, and the
machine learning algorithm. The framework, which includes the algorithm and the
integration layer, is the core part of the test generation. One of the design principles
was that the framework should be able to adapt to multiple test libraries and SUTs.
The aim is to simplify the architecture from recent test generation approaches Yasin
et al. [43] and Zheng et. al [44] to create a highly flexible framework. The framework
forms an MDP that optimizes the test steps towards the testing objective given by
the user.
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1. System under test (SUT). Tests are generated for test objects, which could
be web, mobile, or desktop applications, databases, or even embedded systems. In
this thesis, web applications are used for benchmarking. The SUT communicates
with the test library by returning the requested information from the system and
executing the action keywords.

2. Test library. Test automation libraries exist for automating testing tasks for
the system. The library is usually responsible for communication with the SUT.
Test libraries often build upon structured scripting techniques by having reusable
scripts that could be used in test cases [5]. In web applications, the scripts could
consist of keywords such as clicking an element or typing text into the input field.
The test library dynamically receives instructions, actions, and information requests
as keywords from the framework.

3. Integration layer. The search-based method used in the thesis receives the test
objective from the user to control the test creation process. Thus, an integration
layer forwards information between the machine learning algorithm and the test
library controlling the SUT. The integration layer receives website data and converts
it to a state representation for the ML algorithm. In addition, the layer calculates
the reward for the ML algorithm using the test objective given by the user. The
layer also plays a part in forwarding the selected actions to the test library. Thus,
the integration layer controls the whole test generation process by the objectives set
by the user.

4. Machine learning algorithm. The ML algorithm receives system states and
rewards from the integration layer. Using the states and rewards the algorithm
optimizes towards a testing objective given by a user. Thus, the algorithm estimates
the best possible step in a given state toward the test objective and returns it to
the integration layer for execution. The integration layer and the algorithm are
designed to be modular, which allows running multiple ML algorithms for test
generation. Modularity ensures that the framework is suitable for new algorithms
and test environments.

Besides generating tests, the goal of the framework is to provide a testing tool
that is effortless to set up and has a conservative usage of system resources, allowing
algorithms to be trained in a regular consumer laptop. In addition, it should be
able to expand to larger models that can cover entire applications and systems. The
framework should be capable of performing stochastic testing by creating models of
software behavior [35]. The generation should be uncomplicated to expand to all
types of testing.

3.2.1 State and Action Space for a Web Application

The integration layer converts the responses from the test library and the action
keywords into corresponding state and action spaces. The ML algorithm requires
a vector of features visible in state s, represented by x(s), to output the action
probabilities π(a|s) for the state [28]. Furthermore, it is essential to know the vector
of actions for selecting an action based on the probability distribution output. In the
thesis, the generation approach uses a preselected feature and action vectors that
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could modified based on the training results.
The central question in web application test generation is how to represent the

application states. The previous research by Zheng et al. [45] and Pan et al. [45] scans
the application at every step. If the current page differs from previous observations,
it is added to memory as a new state. The studies have used abstraction methods to
simplify the GUI content into a state that the generation algorithm can compare
with other states. Yasin et al. [43] uses information including the application element
types, positions, and the parent-child relationships to distinguish between the states.

The thesis proposes an abstraction method for translating the HyperText Markup
Language (HTML) page into state representation. A pure HTML document often
contains redundant information, which can hinder learning efficiency. In the abstrac-
tion method, the HTML document is scanned for elements that are differentiated
by types, attributes, and text content. The elements form a vector of feature flags,
indicating if the elements are present on the page. Although this approach loses
some information, including the page structure, the feature vector can store the
state compactly. The state representation in the framework can be modified to
support complex ML algorithms if the algorithm needs additional information from
the environment.

The table 1 shows an example of two scanned elements of a webpage. The
algorithm scans the webpage and compares the found elements to the selected
features to form the feature vector x(s). The features without tracking are updated
to a secondary vector, which can be added to the state space by restarting the training.
Unlike Q-learning, which could update new states and actions to Q-tables during
training [44, 45], the algorithms employed in this thesis necessitate retraining when
there are updates to the action or state space. The feature selection used in training
can be further refined using feature selection techniques, including filtering, wrapper,
and embedded methods [56]. In this thesis, the features are filtered manually.

Table 1: State representation of the system under test involves comparing the elements
on a website with the feature vector. The state is then represented as a vector of
binary feature flags, indicating the visibility of these elements.

State as a Feature Vector
Feature Description
{"tag": "A",
"text": "Cart (0)",
"attributes": []}

Shopping cart link with
zero items is visible

{"tag": "INPUT",
"text": "",
"value": "test",
"attributes": [{"key": "type",
"value": "email"}]}

A input field with
value test is visible
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The table 2 shows an example of the actions available for the ML agent. Similarly
to state space, the action space is selected before training, and the new actions are
saved to a separate vector. The algorithm collects actions from interactive elements
similarly to the proposed method by Yasin [43]. The action vector enables training
the ML model to estimate the optimal action probabilities π(a|s). In the training
phase, the action is selected based on the action probabilities. As the probability
increases, the likelihood of choosing the action rises. The ML agent can take any
action, including unsuitable ones, as it is not always possible to predict all correct
actions based solely on the state. If the training succeeds, the agent selects only
suitable actions when generating the test cases.

Table 2: An action vector is used in the test generation framework. Actions are
selected based on a probability distribution provided by the trained model.

Actions
Action Description
{"keyword": "click",
"args": ["xpath=
//A[contains(text(),’Cart’)]"]}

Click the shopping cart
link

{"keyword": "type_text",
"args": ["xpath=
//input[@type=’email’]", "test"]}

Type text "test" to a
field with attribute
type=’email’

3.2.2 Reward Signal

In reinforcement learning, a reward signal indicates the objective that needs to be
accomplished. In test generation, the reward signal could describe how well the test
steps have reached the planned objective in a test scenario. Common objectives in
test generation are different coverages such as state [57], transition [58], and code
coverage [59]. Other metrics include input diversity [60] and curiosity [44]. In the
thesis, the test generation is focused on covering the individual software requirements
instead of maximizing the overall test coverage. The approach gives the control of
the generated test cases to the user.

The reward signal for a step in Equation 11 is divided into rewards and costs,
which are determined by the current state and action.

step reward = test objective reward− action cost− stagnation cost (11)

The test objective reward is the core of the reward signal controlled by the user.
Its purpose is to define the goal of testing without knowing the exact steps to get
there [28]. The testing objective can be specific, such as reaching a message after
submitting a form, or more generic, for example, locating as many error messages in
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the application as possible. Designing the test objective reward is not a trivial task
that often requires trial-and-error [28]. The reward signal could achieve the desired
signal by simply returning a high positive value after reaching the objective. However,
rewarding the algorithm after completing the objective could lead to sparse rewards
if the correct steps are challenging to find. Design can account for the scattered
rewards by guiding the learning with a more detailed reward signal. However, the
design should not make assumptions about the actions taken towards achieving the
main objective [28].

Since the ML agent can take any action, the reward signal penalizes unsuitable
actions. The action cost returns a negative reward if an action is selected, which
cannot be taken in the state. For example, clicking a link that is not visible. The
cost is a smaller negative reward if the ML agent performs a suitable action. The
reason for the cost is to prevent incorrect actions and guide the agent to complete
the task in as few steps as possible.

The stagnation cost is defined to prevent the plateau problem where the ML agent
wanders between the same states [28]. The cost is a negative value assigned when the
current state has been visited earlier in the trajectory. Discouraging repetition can
reduce stagnation, but it might create path preferences. Therefore, the user must
balance the stagnation cost against the other components of the reward signal.

The ML agent can perform different styles of tests by adjusting the reward
parameters. Before training, selecting an appropriate reward signal is a critical
aspect of successful test generation. Balancing the rewards might also require
multiple trials. The total reward for the test case is the sum of rewards over the test
steps. The generated test cases can then be ranked by the total reward and used for
optimization.

3.3 Algorithms
The test generation benchmarking will be performed with two machine learning
algorithms. These are proximal policy optimization (PPO) [55] and online decision
transformer (ODT) [61]. With both algorithms, the aim is to create an optimal policy
towards the test objective. By sampling actions from the policy, the ML agent should
reach the testing objective. The thesis applies two methods for learning the policy.
First, through search-based testing with the PPO algorithm, and second, by sequence
modeling with ODT using the collected PPO training data, including the predicted
action probabilities. Searching and sequence modeling offer viable solutions for test
generation, as paths can be discovered by exploring the application and building
upon previous trajectories. The PPO algorithm was selected for search-based testing
due to its stability and sample efficiency, which are crucial in web environments
with slow response times [55]. The ODT was the choice for sequence modeling
since the algorithm can efficiently learn the behavior from the collected trajectories
with transformer architecture [62]. Additionally, transformers can utilize the order
of perceived states, in contrast to PPO training. Implementation details of both
algorithms are explained in Sections 3.3.1 and 3.3.2.
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3.3.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a policy gradient algorithm for reinforcement
learning [55]. It’s an on-policy algorithm, which means that the policy used to interact
with the environment is the same as the one being optimized [63]. The algorithm
addresses issues in traditional policy gradient methods of scalability, robustness, and
sample efficiency by a clipped surrogate objective function that limits the size of
policy updates, thus preventing drastic changes in the policy [64]. In addition, The
PPO implementation used for test generation is displayed in Algorithm 1.

Algorithm 1 Proximal Policy Optimization
1: Initialize actor and critic networks
2: for each iteration do
3: for each episode step in the environment do
4: Collect trajectory using current policy
5: end for
6: Compute rewards-to-go Rt and advantage estimate Ât using GAE
7: for each epoch do
8: for each minibatch do
9: Compute ratio rt(θ) = πθ(at|st)

πθold (at|st)

10: Compute policy (actor) loss using PPO-Clip objective: LCLIP (θ) =
Et

[︂
min

(︂
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)︂]︂
11: Compute value (critic) loss by mean-squared error
12: Update actor and critic using gradient ascent with gradient clipping
13: end for
14: end for
15: end for

The PPO implementation uses an actor-critic method with independent feedfor-
ward neural networks for estimating, both the actor and the critic [55]. The actor
outputs the probability distribution over actions and the critic the value for each
state. In each iteration, a new trajectory is collected and added to the batch. After
collecting the trajectory, the rewards-to-go and Generalized Advantage Estimated
(GAE) are calculated for the batch. GAE is selected to balance the variance and
bias in the policy gradient [65]. The batch is then split into several mini-batches and
used to update the actor and the critic over multiple epochs. In one epoch the agent
updates the policy based on collected data. The actor loss is calculated using the
PPO-clip objective and the critic using mean squared error (MSE) loss [63].

The architecture used for both actor and critic is a feedforward neural network
with one hidden layer with 128 neurons. The input and output sizes are determined by
the feature vector and the number of actions, respectively. The network configuration
was similar to OpenAI Gym PPO benchmarks using a ReLu activation function
after the first linear layer [66]. The softmax activation function outputs the action
probabilities after the hidden layer. During experimentation, the network became
overfitted, causing high probabilities for unsuitable actions. Ten percent dropout,
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suggested by Srivastava et al. [67], was added after the hidden layer to prevent
overfitting. Dropout randomly drops the neurons along with the connections from
the network [67]. Additionally, temperature scaling was added to modify the balance
of the action probability output [68].

Hyperparameters control the learning process. In the PPO algorithm, the pa-
rameters can direct factors such as gradient step sizes with learning rate and the
discount factor γ [55]. The benchmarking process applied a manual parameter search
starting from the suggested ranges for PPO training [69]. The parameters reach-
ing the highest rewards were selected for the final model. In addition to manual
searching, automatic hyperparameter optimization was also employed to optimize the
learning rate. Exploring the web environment is often slower compared to simulated
environments. Therefore, the manual search reduced parameters such as the batch
size to lower values. The selection process and the hyperparameters are in Appendix
A.1.

3.3.2 Online Decision Transformer (ODT)

Decision transformer, introduced by Chen et al., [62] converts reinforcement learning
to a sequence modeling problem. The algorithm abstracts the decision-making
process as a trajectory of states and actions, optimizing rewards over the trajectory
[62]. The decision transformer leverages the transformer architecture, which has
reached superior performance in applications such as text generation using language
models such as Generative pre-trained transformer (GPT) and Bidirectional Encoder
Representations from Transformers (BERT) [33, 70]. The decision-making process,
which involves selecting an action based on the state, is a similar problem to sequential
data translation tasks where transformer models are frequently used. The algorithm
architecture is visualized in Figure 7.

The decision transformer starts by embedding the inputs, including the states,
actions, and rewards-to-go, with positional encoding to retain the trajectory order.
The trajectory is then passed through a causal transformer, which uses GPT-2
architecture [62]. Finally, the linear decoder translates the transformer output into
the action probabilities. The decision transformer is trained offline from collected
trajectories such as random explorations in the environment [62].

In short, the algorithm aims to optimize actions for maximum reward using the
patterns in the trajectories. Compared to reinforcement learning with policy gradient
approaches, the decision transformer doesn’t only utilize the current state but also
information on the previous steps. The memorization of previous steps is limited by
context length variable K [62]. With Atari benchmarks, the study by Chen et al.
[62] noticed that the context length K = 1 reduced the performance of the decision
transformer and increased with higher values. In web applications, memorizing the
previous states might be even more essential since these environments often contain
various loops between the same states.
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Figure 7: Decision Transformer architecture[62]

Another benefit of decision transformers for test generation is the option to select
the target reward for the test generation. The algorithm can be used for behavior
cloning training the model from trajectories and evaluating using a targeted reward
[62]. By selecting the reward signal, the test generation can behave differently and
create various test cases.

For benchmarking the test generation in this thesis, the original decision trans-
former algorithm by Chen et al. [62] with continuous action space was modified for
discrete action selection. Furthermore, the algorithm was extended to include online
fine-tuning. The implementation is displayed in Algorithm 2.
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Algorithm 2 Decision Transformer for Discrete Actions [62]
1: Input: R, s, a, t: returns-to-go, states, actions, or timesteps
2: Input: embed_s, embed_a, embed_R: linear embedding layers
3: Input: embed_t: learned episode positional embedding
4: Input: pred_a: linear action prediction layer with softmax activation for proba-

bilities
5: Input: transformer : transformer with causal masking (GPT)
6: function DecisionTransformer(R, s, a, t)
7: pos_embedding ← embed_t(t)
8: s_embedding ← embed_s(s) + pos_embedding
9: a_embedding ← embed_a(a) + pos_embedding

10: R_embedding ← embed_R(R) + pos_embedding
11: input_embeds← stack(R_embedding, s_embedding, a_embedding)
12: hidden_states← transformer(input_embeds = input_embeds)
13: a_hidden← unstack(hidden_states).actions
14: return softmax(pred_a(a_hidden))
15: end function
16: # Training the decision transformer
17: for each (R, s, a, t) in dataloader do
18: a_probs← DecisionTransformer(R, s, a, t)
19: loss← cross_entropy(a_probs, a)
20: optimizer.zero_grad(); loss.backward(); optimizer.step()
21: end for
22: # Evaluating the decision transformer
23: target_return← 1
24: R, s, a, t, done← [target_return], [env.reset], [], [1], False
25: while not done do
26: action_probs← DecisionTransformer(R, s, a, t)[−1]
27: action← sample(action_probs)
28: new_s, r, done, _← env.step(action)
29: R← R + [R[−1]− r]
30: s, a, t← s + [new_s], a + [action], t + [len(R)]
31: R, s, a, t← R[−K :], . . .
32: end while

Compared to the original decision transformer, the softmax activation function is
added to the action prediction for categorical probability distribution output. The
framework samples the action from the distribution similar to the PPO implementa-
tion. The original decision transformer included only offline training [62]. Therefore,
the algorithm used for benchmarking has an option for online fine-tuning. The thesis
uses an online decision transformer (ODT) algorithm, first formulated by Zheng
et al. [61]. In online training, evaluation trajectories are collected and included in
training data in the subsequent training iterations [61]. Experimental details of ODT
implementation, including the hyperparameters, are listed in Appendix A.2.



34

3.3.3 Training and Evaluation

Before test generation, the implemented algorithms train a model for a specified
test scenario. The benchmarking trains models for PPO and ODT algorithms and
evaluates the performance by comparing the achieved rewards and test coverage
metrics. For the PPO model, the first step is pre-training the model. In the PPO pre-
training, the reward signal doesn’t contain the test objective reward. The objective
is not included since the model is trained to learn the state-specific suitable actions
to reduce the required training time in the fine-tuning phase. After the model
is pre-trained, the agent no longer needs to explore and learn which actions are
unavailable in each training round. The pre-training phase is also used for collecting
the feature vector and action space by restarting the training after the model has
explored states for a user-specified number of episodes. An episode is the trajectory
from start to finish.

After pre-training the PPO model, the model is fine-tuned with the test objective
reward included in the reward signal. In this phase, the model is trained to generate
the test cases for specified test scenarios. When the model is trained, the trajectories
and total rewards are collected. After a model has been trained with PPO, the
collected data is used for training a model with ODT. The ODT training is conducted
in two parts: offline pre-training with the collected data and online fine-tuning in
the online environment while generating new trajectories to the dataset.

The created models are evaluated in the original and modified test environment
for a test scenario. The evaluation generates 100 test cases, from which performance
data, including the mean reward and the completion percentage of the test objectives,
are collected. The research in test generation often evaluates the algorithms by
coverage metrics such as code coverage [8]. The test generation approach in the
thesis doesn’t aim for the highest possible code coverage across the application due
to the test objective set by the user. Therefore, the evaluation focuses on the covered
paths for the test scenario by examining the test generation graphs.

3.4 Benchmarking Environment
Machine learning algorithms are often trained and evaluated in simulated envi-
ronments such as OpenAI’s Gym [71]. Therefore, a benchmarking environment is
essential for evaluating the performance of test creation algorithms and verifying the
functionality of the framework. Research in GUI-based test generation has often
focused on mobile [43] or web applications [44] for test generation. For benchmarking
in this thesis, a web application has been designed to run in a local environment. The
local application ensures greater stability and eliminates any latency that might occur
while testing the application over the internet. A screenshot of the benchmarking
application is shown in Figure 8.

The web application has been designed to mimic a generic web store where users
can purchase items. It includes common functionality used in many websites, such
as navigation, modals, and forms. The application is divided into software features
that need to fill specified requirements. The software features are product browsing,
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shopping cart, and user login. In Agile software development, the requirements are
used by a tester to verify that the application meets the specifications [72]. High-level
requirements designed for the software features are listed from 1 to 4:

1: A user should be able to browse different product categories and search for
specific products

2: The website includes a shopping cart page where the products can be added

3: The purchase can be completed by filling out a form

4: A user can log in to the website with a username and password

ROBO_STORE Search products Search HOME SHOP USER CART (0)

Copyright ROBO_STORE ©

Home
SHOP NOW

Security
SHOP NOW

Healthcare
SHOP NOW

Entertainment
SHOP NOW

Figure 8: Screenshot of the benchmarking web application

The requirements can be translated into test objectives by creating a reward
signal. The signal returns the combined rewards and costs of the step taken in the
test environment, along with a boolean value that indicates whether the final test
objective has been achieved. Translating a test to a reward signal manually removes
the need for natural language processing. Although, converting the application-
related data into test cases is already demonstrated by Schafer et al. in white-box
test generation [49].

From the requirements, multiple test objectives could be defined for guiding the
ML agent through the application. The reward signal gives freedom to control the
behavior of the ML agent. The design should still monitor the learning behavior
to avoid the plateau problem [28]. For the benchmarking application, the reward
signal will be designed to increase the rewards towards the final objectives to avoid
stagnation.
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3.4.1 Test Objectives as Reward Signals

The reward signal is one of the critical aspects of the generation process. Before
initiating the training process, the software requirements are transformed into two
test scenarios, each incorporating specific test objectives. Figure 3 shows the chosen
static rewards and costs for the scenarios.

Designing a reward signal requires often trial-and-error [28]. First, the range of
the rewards was set approximately from -1000 to 1000 with a maximum of 20 steps in
an episode. Negative costs from actions will decrease, and the test objective reward
will usually increase the total reward. After selecting the ranges, the action costs
were adjusted by observing the performance while training an initial policy. After
setting the failed and passed action costs, the stagnation cost was added to avoid
looping through the same states.

Table 3: Rewards and costs for the test scenarios

Reward signal
Name Value
Test objective reward Computed by a function
Passed action cost -5.0
Failed action cost -25.0
Stagnation cost -15.0

The test objective reward is specific to a test scenario. Two test scenarios can
cover the software requirements. The scenarios are logging in to the page and buying
products from the website. The first scenario is divided into two test objectives,
correct and incorrect logins, which cover the 4th requirement. The objectives are
transformed into rewards simply by returning a positive reward from a login attempt
and a greater value from a successful login. A test case is complete when the successful
login is reached. During experimentation with the reward signal, it became apparent
that returning small negative rewards when the agent explores pages other than the
login page enhances the efficiency of the learning process. The test objective reward
for the first test scenario is displayed in Algorithm 3.
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Algorithm 3 Test objective reward for the first test scenario
1: firstObjectiveReached← False
2: function Reward(loginPage, loginFailed, loginSucceeded)
3: reward← 0
4: done← False
5: if not loginPage then
6: reward← reward− 30
7: end if
8: if not firstObjectiveReached and loginFailed then
9: firstObjectiveReached← True

10: reward← reward + 500
11: end if
12: if loginSucceeded then
13: reward← reward + 1000
14: done← True
15: end if
16: return reward, done
17: end function

The second test scenario includes the objectives of adding products to the shopping
cart and completing the purchase. The scenario covers requirements 1 to 3, as the
ML agent can learn the paths through category pages or the search function. The
objectives are transformed into the test objective reward by returning high positive
values from reaching both objectives. In the second test scenario, an additional cost
is not added to avoid affecting the exploration before the second objective. The test
objective reward for the first test scenario is displayed in Algorithm 4.

Algorithm 4 Test objective reward for the second test scenario
1: firstObjectiveReached← False
2: function Reward(shoppingPageNotEmpty, purchaseComplete)
3: reward← 0
4: done← False
5: if not firstObjectiveReached and shoppingPageNotEmpty then
6: firstObjectiveReached← True
7: reward← reward + 800
8: end if
9: if purchaseComplete then

10: reward← reward + 1000
11: done← True
12: end if
13: return reward, done
14: end function

Since there are no definite guidelines for designing the reward signal, the user
could modify the test objective reward, and training could achieve similar or even
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better behavior. The training process could use techniques such as shaping to update
the reward signal as learning proceeds [28]. For the benchmarking, the two reward
signals achieve coverage of the functional requirements. Even though these cover the
functionality in the benchmarking application, test generation could be expanded to
include security or broad defect finding in production environments.

3.4.2 Selected Features and Actions

The feature vector was created by exploring the application during the pre-training
phase. The page is scanned with an automatic script in each iteration, and the
elements are collected into a feature vector and saved for the training phase. A
feature includes the element name, text content, and every attribute. All content
within the division (div) and paragraph (p) elements were automatically filtered to
remove redundant features. Additionally, the shopping element was excluded since it
contains updating numerical values. The final feature vector contained 186 elements.

The actions were created and added to a vector, similar to the features. Two
keywords, "Click" and "Type Text", were used to cover the actions in the application.
The automatic script selected all link (a) and button elements and created click
actions. After selecting the elements, the script assigned type actions for the text
fields. For each field, two test input options were provided, including correct input
values for both test scenarios. After automatic inputs had been created, manual
additions were made to broaden the action space. Manual filtering also had to be
performed to improve the learning process. Filtering dropped a few "Add to Cart"
actions generated by the script to balance the number of available actions in each
view. The resulting action array contains 62 actions.
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4 Results
The results chapter contains the training of the machine learning models and eval-
uation by generating the test cases. The training and evaluation are performed
for the two designed test scenarios executed in the same test environment. The
test environment is further modified in the evaluation section to test the generation
performance in a changing environment.

4.1 Training with PPO
The aim of benchmarking the algorithms within the framework was to determine the
effectiveness of objective-directed test generation and how to optimize the machine
learning model to create test cases. As planned, the training process is divided into
two phases. The model is pre-trained for 600 episodes in the first training phase
without defining a testing objective. Thus, the test objective reward in Equation 11
equals zero. With pre-training, the model learns the basic steps in the environment
and reduces training time in the fine-tuning phase. Figure 9 displays the mean
reward from pre-training with three random seeds.
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Figure 9: Mean episode rewards result from pre-training a model in the benchmarking
environment using the PPO algorithm. During the pre-training phase, a test objective
reward is zero.
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The pre-training reaches maximum mean reward across three training runs after
300 episodes. While pre-training without a test objective, the model overfits after
accomplishing the highest rewards, lowering the probability of suitable actions.
Overfitting is a problem in the fine-tuning phase since an overfitted model doesn’t
generalize well to unseen data [73]. The pre-training phase utilizes early stopping to
reduce overfitting. Therefore, the pre-trained model is selected for the next training
phase at the 300-episode mark when training has reached the maximum reward.

After pre-training, the model undergoes fine-tuning for both test scenarios. In
fine-tuning, the scenario-specific test objective reward determines the value of the ML
agent’s path. In other words, the reward signal assigns a score to the generated test
cases according to the objectives in the test scenario. The fine-tuning is performed
three times for both test scenarios. Figure 10 and 11 display the mean reward of
the training runs and the mean test scenario completion signal for each run. The
training uses the optimized hyper-parameters shown in Appendix A.1.

0 200 400 600 800 1000 1200 1400
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Do
ne

PPO - Test Scenario 1 Done

0 200 400 600 800 1000
Episode

−1000

−500

0

500

1000

Re
wa

rd

PPO - Test Scenario 1 Reward

Figure 10: Test Scenario 1 - PPO Fine-Tuning. On the left is the mean of the
scenario completion signal [0, 1], and on the right are the mean episode rewards.
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Figure 11: Test Scenario 2 - PPO Fine-Tuning. On the left is the mean of the
scenario completion signal [0, 1], and on the right are the mean episode rewards.
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The PPO algorithm reached a test complete condition of the test objectives during
the fine-tuning phase, although the model did not learn to generate all the expected
test cases. Furthermore, the performance of the training in test scenarios shows
noticeable differences. The differences were expected since the scenarios require
distinct test steps.

Besides training performance, fine-tuning exhibits a more significant reward
variance than pre-training. The higher variance is caused by a sparse test objective
reward signal, which returns a high value when the objective is reached and a lower
value when the ML agent selects inadequate test steps. Since the algorithm optimizes
the probability of actions, the agent might randomly choose the correct steps even
though the agent has not learned the objective. The training graphs show that the
frequency of high rewards increases when the model learns the test objective.

The first test scenario, login to the system, is in a test-done state when the agent
logs in with the correct details. Positive rewards were also awarded for login attempts
with incorrect information. The training plots show that the test scenario is first
completed after 70 episodes. Furthermore, the completion rate and the mean reward
increase through training. The agent also discovered the trajectory with the highest
possible rewards by first trying the wrong login details and completing the login
afterward.

The second test scenario differs in length and the amount of potential trajectories.
The test scenario has two objectives: adding a product to the shopping cart and
completing the purchase. The first test objective is shorter and has multiple routes
through shopping, category, and search functions. In contrast, the second objective
requires specific test steps to complete the form. Based on the reward signal, the
agent learns the first test objective quickly after 200 episodes. However, the second
objective is achieved only once in the training iterations. Upon attaining the initial
test objective, the agent searches for the optimal competition path, resulting in
training plateauing and later declining.

When comparing the two test scenarios, the PPO algorithm performed better
with shorter trajectories and test objectives with multiple paths. Additionally, the
test objective significantly affects the learning performance. In the first test scenario,
the reward signal encourages the agent to stay on the login page by adding a cost
when the agent leaves the page. In contrast, in the second scenario, the agent doesn’t
receive additional rewards for completing the purchase form. As a result, staying on
the shopping cart page and trying to fill out a form doesn’t benefit the agent in the
short term. Therefore, the second test scenario is challenging to complete.

4.2 Training with ODT
The subsequent target is to train an online decision transformer with the collected
PPO training trajectories. The models are initially offline pre-trained for both test
scenarios using test data from PPO training. In the second phase, the models are
fine-tuned through online training while collecting new trajectories for the training
data. The training is divided into multiple iterations of training steps that update
the model parameters. The pre-training contains five iterations with 100 steps and
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fine-tuning ten iterations with 1000 steps in one iteration. After each iteration, the
algorithm evaluates the model for 30 episodes in the online environment. The mean
training loss is displayed in Figure 12, while the mean episode rewards in Figure 13.
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Figure 12: ODT pre-training and fine-tuning mean loss for both test scenarios.
Pre-training iteration contained 100 steps and fine-tuning 1000. The training was
executed three times.
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Figure 13: ODT mean reward for pre-training and fine-tuning phases. The evaluation
was performed for 30 episodes after each training iteration.
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Using the PPO training data, both models reached high positive rewards in 200
training steps in the pre-training phase. In the duration, the model learned to output
action probabilities, which resulted in a similar outcome as the steps generated with
the PPO models. However, the rewards had high variations in the pre-training for
the second test scenario. The training loss converged after 500 steps of offline and
3000 steps of online training.

In the online fine-tuning phase, the models were evaluated in a benchmarking
environment after a training iteration. The algorithm appended the evaluation
trajectories to the training data. Although the algorithm explored new paths in the
online training, the maximum rewards didn’t further improve compared to the PPO
training. Based on the training graph, the models reached the same test objectives as
PPO. The reward variance indicates that the models don’t explore the environment
as much as in the PPO training. Overall, the ODT training achieved comparable
maximum rewards to the PPO models.

4.3 Test Generation Evaluation
The second research question focused on an analysis of the trained models by
generating a series of test cases. The best-performing PPO and ODT models,
according to episode rewards, are selected for test generation. The ODT model for
the same test scenario has been pre-trained with the collected action probabilities
during PPO training. Thus, the null hypothesis is that the ODT model should be
able to exhibit as high mean rewards as the PPO model. In each evaluation round,
100 test cases are generated in total. The evaluation is run in the original environment
and modified environments explained in Appendix A.3. Mean reward, standard
deviation, maximum reward, and success rate for test objectives are collected and
displayed in Table 4 and 5.

Table 4: The table presents the outcomes of 100 evaluation rounds for the models
in the first test scenario. The environments consist of both original and modified
benchmarking applications. In the modified application, the user page is accessible
only through the product pages. The table displays the completion percentages for
Test Objective 1 (TO1) and Test Objective 2 (TO2).

Test Scenario 1
Environment Algorithm Mean Reward STD Max Reward TO1 TO2
Original PPO 59.2 643.3 1195.0 46% 40%
Original ODT 764.3 263.4 980.0 2% 99%
Modified 1 PPO -708.4 749.0 1200 23% 16%
Modified 1 ODT -1366.1 42.2 -1140.0 0% 0%
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Table 5: The table presents the outcomes of 100 evaluation rounds for the models in
the second test scenario. The environments consist of both original and modified
benchmarking applications. In the modified application, access to some of the
category pages are disabled. The table displays the completion percentages for Test
Objective 1 (TO1) and Test Objective 2 (TO2).

Test Scenario 2
Environment Algorithm Mean Reward STD Max Reward TO1 TO2
Original PPO 369.1 266.0 585 92% 0%
Original ODT 253.1 347.4 565.0 83% 0%
Modified 2 PPO -499.45 114.7 355 1% 0%
Modified 2 ODT -538.1 131.9 305.0 2% 0%

Although the algorithms used equivalent training trajectories, the models have
differences in the evaluation rewards. Therefore, the alternative hypothesis is that
there is a difference in the mean rewards between the algorithms. The significance
of the results can be checked by an independent two-sample t-test in Table 6.
Independent t-test compares two means by producing a p-value to describe the
confidence of the results [74]. For the t-test, the data are assumed to be approximately
normally distributed with variance differences. Welch’s t-test variant is used to take
into account the variance differences [74].

Table 6: Independent two-sample t-test results for the mean reward difference in the
test scenario and environment combinations

Scenario Environment T-Statistic P-Value
1 Original −10.14 3.30 ∗ 10−18

1 Modified 8.77 5.08 ∗ 10−14

2 Original 2.65 0.0087
2 Modified 2.21 0.0282

The null hypothesis of no statistical difference can be rejected, as each p-value is
significantly lower than the typical significance level of 0.05 [74]. Therefore, the
differences in mean rewards between the Proximal Policy Optimization (PPO) and
Online Decision Transformer (ODT) algorithms are statistically significant.

The lower mean rewards observed in ODT are likely attributable to multiple
factors. The algorithmic differences can partially explain the differences in mean
rewards. As the PPO uses the current state of the application, the ODT follows
the previous states, actions, and rewards. Just the approach of using the previous
data can create vastly different training results. As the ODT is pre-trained with
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the PPO action probabilities, the PPO training data limits the ODT performance.
For instance, if there are only a few example trajectories with high rewards, as
in the case of login training, the ODT model might not learn the optimal action
probabilities. Consequently, failing to reach the optimal test steps will result in lower
mean rewards. Furthermore, fine-tuning in an online setting failed to improve the
mean rewards. The lower performance might also be attributed to a limited number
of new trajectories explored during the online training phase.

The algorithms also show differences when examining the individual evaluations
and maximum rewards. The PPO algorithm successfully trained a model that
achieved the login attempt objectives in the first test scenario. Similarly, the ODT
model reached both objectives. The most notable aspect is the behavior between
the models. The trained PPO model has more variance in the selected actions while
submitting the wrong user details first and then the correct ones. When the login
form receives correct and incorrect information, evaluation has increased maximum
rewards and higher reward variance. Contrarily, the ODT model exhibits lower
variance and aims specifically for successful logins. Login succeeds nearly every
round, reaching a higher mean reward than the PPO model. However, the maximum
reward is lower since the model doesn’t attempt to input incorrect login details.

In the second test scenario, 80% of the generated test cases achieved the first test
objective of adding a product to the shopping cart for both models. As observed in
the training phase, the second objective of completing the purchase is not reached
with the trained models. The ODT achieved a slightly lower mean and higher reward
variation in the second scenario. The evaluation further outlined that the rewards
for the scenario are two sparse, and the model continues to explore the environment
until reaching the step limit.

Modifying the environments reduces the test generation performance. The
environment was modified so that the most commonly used route to the test objective
is no longer available, forcing the model to use an alternative path. Reduction in
performance is expected since the models trained in the original environment haven’t
adjusted to states where some elements are missing. In the first test scenario, the
PPO model reached the objectives with lower percentages, and the ODT model
didn’t reach the objectives at all. The second test scenario also had lower completion
percentages. The main observation from evaluating the modified applications is that
the changes or bugs can be detected by test generation. A modified path will lead to
lower completion percentages.

For examining the test coverage required by the third research question, Figure
14 and 15 contain directed graphs of 10 test cases for both scenarios. The section
focuses on the individual paths covered by the test generations, as the interest lies in
the coverage around the test objective. The graphs present the system state as nodes
where a level corresponds to a successful test step. The nodes include information
about the reached objective and the visit count in the state at the current level.
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Figure 14: Generated test steps represented in a tree graph for Test Scenario 1.
A darker color indicates a higher number of visits to that state. Markings in the
diagram are as follows: ’0’: the agent is on the login page, ’1’: Test Objective 1 has
been reached, and ’2’: Test Objective 2 has been reached. Nodes where the process
is complete are marked with a blue circle.
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Figure 15: Generated test steps are represented in a tree graph for Test Scenario
2. A darker color indicates a higher number of visits to that state. Markings in the
diagram: ’C’: the agent is on the category page, ’S’: the agent is on the search page,
and ’1’: Test Objective 1 has been reached.
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The plotted test cases are consistent with the observations from evaluating the test
generation in table 4. The PPO model explores the application with widely spread
action probabilities, which usually leads to either a login attempt or a successful login.
In the other graph, the ODT model trained with the same data has stricter paths
following the near-optimal routes to successful login with some alternative orders of
filling the text fields. When comparing the paths in the first test scenario, the model
trained with PPO covers more of the functionality related to the requirements. The
ODT model covers fewer paths but is consistent with successful logins.

The second test scenario is even more interesting since there are multiple paths to
the test objectives. There are three main paths: search tool, category pages, and all
products page to reach the first test objective of adding the products to the shopping
cart. The PPO model mainly uses the all-products page as the ODT navigates the
category pages to reach the test objective. In addition, the ODT model uses all paths
to achieve higher coverage than PPO. After reaching test objective 1, both models
explore the application, aiming to reach the final objective of completing the order.

Although the coverage differed between the models, the training parameters can
control the probability distribution for the actions. For instance, modifying the
temperature hyperparameter can increase or decrease the stochasticity. In addition,
the pre-training process can manipulate the training data for the ODT algorithm to
change the behavior.

The evaluation showed that the test generation approach produces various test
cases with carefully planned training. The pre-selected actions and states work
well when the number of paths is large enough. The ODT algorithm also enabled
the behavior cloning from the collected data to similar or even better rewards and
coverage to the PPO model.
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5 Discussion
The discussion section will focus on interpreting and comparing the results to other
test generation methods. In addition, the section outlines the future research needed
for improving the test generation performance in different metrics.

5.1 The Framework
The primary aim of the thesis was to create a testing framework that could support
multiple machine learning algorithms and testing libraries. With the framework,
test generation should be able to run effortlessly by setting up the test environment
including the training objective and parameters. As demonstrated by the results,
the framework could generate test cases and multiple algorithms can be run using
the framework.

For future use cases, the framework is expandable for multiple test libraries and
areas such as API and database testing. In addition, removing the need for manual
filtering of the generated features and actions could improve the state and action
space creation. As a result, converting the website to states and actions can be
optimized and automized. The automatic translation process is required for fully
autonomous test generation using software requirements and documentation. The
framework provides a basis to develop new algorithms and more complex models for
test generation.

5.2 Test Generation Optimization
In prior studies, the PPO algorithm has not been applied to test generation [7, 8].
Compared to other search-based methods utilizing Q-learning including mobile testing
by Adamo et al. [75], the PPO test generation with the test objective reward signal
gives more control over the generated test cases. By implementing a reward signal
for the software requirements, the test generation can reach high test coverage.
Additionally, the created model can be used to detect defects in the test environment
by observing the test objective completion rate and the paths as demonstrated
by the modified environments in the evaluation section. The PPO search-based
test generation method, with its pre-selected state and action space, was simple to
implement. However, the generation performance, particularly in single-path test
cases, is improved with more complex curiosity-driven approaches by Zheng et al.
[44] and Pan et al. [45]. These methods, however, require more memory for saving
the state-action pairs and more complex pathfinding algorithms [45].

Using the collected trajectories, the ODT algorithm was able to create a model
with high positive rewards and matching coverage to the trained PPO policy. In the
second test scenario, ODT reached higher test coverage compared to the PPO test
generation. The benefit of using ODT over the traditional policy gradient methods is
the ability to remember the order of states and selected actions with context length
hyperparameter [62]. The context length affects the generation performance since
the shortest path might sometimes repeat identical states. A potential use case for
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ODT is learning the model from manually developed test cases. Although Khaliq
et al. [48] used transformers to generate black-box test data, manually created test
cases have not been utilized for generating new tests. In general, research on using
transformers in black-box test generation is in its early stages.

A limitation of the approach used for test generation is the state and action
space that must be selected before training. In addition, the model doesn’t have
information on the incorrect actions for a state. As observed in the evaluation phase,
the second objective in test scenario 2 was not learned. The behavior can be partially
attributed to a phenomenon called the curse of dimensionality introduced by Bellman
[76]. When the action space grows, the combinations of possible trajectories and
computational requirements increase exponentially [28]. Therefore, the test objectives
with multiple available actions tend to perform better compared to a single action
combination. Carefully selecting the reward signal can help as with the first test
scenario. However, longer single-path test objectives are still difficult to reach.

The challenge for the user is designing suitable test scenarios for the test generation.
The training performance depends on several factors including the reward signal,
actions, state, and hyperparameter selections such as the learning rate. Therefore, the
goal of test generation should be creating a generic model for multiple applications.
Nevertheless, expanding the framework to build a generic model and using the model
to generate test cases across different applications is left for future research.

5.3 Future Research for Black-Box Test Generation
In the broader context, the target of the test generation is to have the complete
pipeline in Figure 5 fully automated. Successfully overcoming the challenges of
automating each section could help with anomaly detection in autonomous self-
healing systems [77]. When focusing only on the limitations found in benchmarking,
the focus of improvement should be on overcoming the problems with scaling up the
state and action space.

As mentioned, one approach is to have a more advanced algorithm that learns
the available actions in a state, such as the Q-learning-based approach used by Pan
et al. [45]. In the approach, the actions were limited only to the legal ones in a
state, unlike the thesis framework, which allowed the execution of any listed action at
every step. However, extracting suitable state-action pairs might not be trivial, even
with web applications. The situation gets more complicated when testing systems
that don’t automatically indicate the appropriate actions. Even though this poses a
challenge for test generation, more advanced feature and action extraction methods
are possible with machine learning. For instance, Khaliq et al. [48] used object
detection for extracting features from mobile application screenshots.

The thesis demonstrated that the black-box test generation by sequence modeling
is achievable from collected trajectories. Although ODT can generate test cases, the
method has action and state space scalability issues similar to the PPO algorithm.
Since transformers have been utilized for complex text-based decision-making in
driving, as demonstrated by Sha et al. [78], and in interactive text environments,
as shown by Gontier et al. [79], it is possible to resolve the limitations of state
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and action spaces. Similarly, the ODT algorithm could be adapted for text-to-text
decision-making. The algorithm could utilize a large language model by directly
inputting the HTML code as a state. The test objective could also take the form
of plain text, thereby eliminating the need for a reward signal. The actions could
consist of combinations of keywords and attributes in text format, which removes the
need for preselected actions. Since the transformers use supervised and unsupervised
methods, trajectories must be collected using the search methods for training these
transformer-based language models. Moreover, transformers require an efficient
method to store the website state to conserve tokens. Therefore, the algorithm must
abstract the HTML document to a simple form.
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6 Conclusion
The thesis explored methods around test generation and proposed a framework for
executing the machine learning algorithms for test generation. The framework was
designed to execute different types of algorithms for multiple test automation libraries.
The aim was to be able to create a stochastic model of the available actions and
generate test cases with the model trained for a specific test scenario.

With the framework, the thesis aimed to answer questions about the test gen-
eration. The first question concerned the optimization of the machine learning
algorithms for generating script-based test cases. The critical aspect was finding the
components of test generation that must be considered for successful test generation.
The second and third questions aimed to compare the effectiveness of two algorithms,
Proximal Policy Optimization (PPO) and Online Decision Transformer (ODT), in the
context of test generation. The factors for comparison were the training performance
and coverage. The thesis also considered future improvements for the presented test
generation methods.

The two algorithms, PPO and ODT, were implemented and benchmarked in a
local web application. The benchmarking phase had two testing scenarios, one with a
simple login objective and another with a more complicated task of buying products.
A machine learning policy was trained for each algorithm and scenario pair. The
PPO algorithm learned the policy by exploring the application, whereas the ODT
algorithm utilized the data gathered from the PPO training process. The evaluation
phase used the resulting machine learning models to generate test cases in original
and modified test environments for observing performance differences. In addition,
the coverage was checked by plotting ten generated test cases.

The results demonstrated that achieving a carefully planned test objective is
feasible with the framework by constructing a stochastic model and generating test
steps based on this model. The main observation was that the PPO method was as
efficient in creating the stochastic model by exploring the application while offering
control over the generated test cases through the reward signal. In addition, the ODT
algorithm was able to achieve similar test coverage using the trajectories collected
from PPO training. However, selecting a proper reward signal, action space, and
state space is critical for successful test generation. The tester must also be aware
that the ODT training depends on the training data collected from the PPO training.

Based on the results, further research is needed in search-based testing and
sequence modeling approaches. Although objectives with multiple paths were uncom-
plicated to explore, the test cases leading to objectives with only a few correct paths
proved challenging to generate. Recently, curiosity-based test generation has shown
progress in efficiently navigating websites. The algorithms benchmarked in the thesis
could be expanded to include dynamic state-based actions instead of a fixed number
of actions. In addition, the ODT algorithm could perform the decision-making
as a text-to-text task while removing the need for state and action spaces. The
developed models can then be trained and utilized for test generation across various
applications.
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In conclusion, test case generation provides an approach that expands beyond
traditional regression testing. The created test framework offers a foundation for
further exploration into machine learning methods for black-box and white-box
testing. In addition, the approach has significant potential to enhance the efficiency
of the testing process.
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A Experimental Details
The test generation framework and implemented algorithms are available from:
https://github.com/rikulehtonen/Test-Case-Generation-Masters-Thesis

All of the models created in thesis were trained with consumer-grade laptop with
NVIDIA T500 and 4 GB of GPU memory.

A.1 Proximal Policy optimization
The PPO hyperparameters follow ranges from a post by AurelianTactics [69]. The
parameters were manually searched, by selecting the best values for the pre-training.
Furthermore, the learning rate was optimized with Optuna for both test scenarios.
The selected hyperparameters are listed in Table A1

Table A1: Hyperparameters for training with PPO. Pre-training used the parameters
from test scenario 1.

Hyperparameters
Hyperparameter Test Scenario 1 Test Scenario 2
learning rate 1e-3 5.558e-4
gamma 0.99 0.99
gae lambda 0.95 0.95
clip 0.2 0.2
max timesteps 20 20
batch timesteps 20 20
minibatches 3 3
episode max timesteps 20 20
iteration epochs 4 4

https://github.com/rikulehtonen/Test-Case-Generation-Masters-Thesis
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A.2 Online Decision Transformer
The online decision transformer was implemented and the hyperparameters were
selected based on the approach by Chen et al. [62]. Furthermore, the final parameters
were partly selected from implementation by Lawson [80]. The ODT used the GPT-2
model for the benchmarking. The selected hyperparameters are listed in Table A2

Table A2: Hyperparameters for training with ODT. Pre-training used the parameters
from test scenario 1.

Hyperparameters for both test scenarios
Hyperparameter Offline Pre-training Online Fine-tuning
learning rate 1e-4 1e-4
weight decay 5e-4 5e-4
batch size 64 256
max iters 5 10
num steps per iter 100 1000
max ep len 20 20
reward target 1600 1600
pct traj 1.0 1.0
embed dim 512 512
n layer 4 4
n head 4 4
warmup steps 500 1000
num eval episodes 30 30
K (context length) 20 20
dropout 0.1 0.1
online buffer size 1000 1000
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A.3 Benchmarking Environment
A custom benchmarking application has been built to empirically validate the test
generation. Figures A1 and A2 display the 4 pages of the benchmarking application.

ROBO_STORE Search products Search HOME SHOP USER CART (0)

Copyright ROBO_STORE ©

Home
SHOP NOW

Security
SHOP NOW

Healthcare
SHOP NOW

Entertainment
SHOP NOW

ROBO_STORE Search products Search HOME SHOP USER CART (1)

Login

Username

Password

Login

Copyright ROBO_STORE ©

Figure A1: Screenshots of the benchmarking application. On the left is the front
page, and on the right is the login page.

ROBO_STORE Search products Search HOME SHOP USER CART (1)

RESULTS FOR ENTERTAINMENT

DanceParty DJ Bot
ENTERTAINMENT

$ 999.99

ADD TO CART

Movie Recommender Bot
ENTERTAINMENT

$ 199.99

ADD TO CART

Karaoke King Bot
ENTERTAINMENT

$ 449.99

ADD TO CART

BoardGame Buddy
ENTERTAINMENT

$ 699.99

ADD TO CART

ROBO_STORE Search products Search HOME SHOP USER CART (1)

IMAGE PRODUCT PRICE QUANTITY ACTIONS TOTAL PRICE

SmartDoor Guard $ 499.99 1 + - x $ 499.99

Grand Total: $ 499.99
Login

Full Name Email Address Submit Order

Copyright ROBO_STORE ©

Figure A2: Screenshots of the benchmarking application. On the left is the results
page, which selects the products based on the query: category, search, or all products.
On the right is the shopping cart page, which displays the total sum of products
added to the shopping cart.
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The original environment is also modified to evaluate the model performance to
simulate application with bugs or new updates. The modified environment with
removed login page link for first test scenario in Figure A3. Figure A4 displays the
benchmarking application with removed links for the second test scenario.

ROBO_STORE Search products Search HOME SHOP CART (0)

Copyright ROBO_STORE ©

Home
SHOP NOW

Security
SHOP NOW

Healthcare
SHOP NOW

Entertainment
SHOP NOW

Figure A3: Modified application 2 for the second test scenario. The login page link
"USER" is only available on product and shopping cart pages. The link is removed
from the front page.

ROBO_STORE Search products Search HOME USER CART (0)

Copyright ROBO_STORE ©

Entertainment

SHOP NOW

Figure A4: Modified application 2 for the second test scenario. On the front page,
3 category links and all products link is removed to evaluate performance in the
updated environment.


	Abstract 
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and Abbreviations
	1 Introduction
	1.1 Objectives and Scope
	1.2 Structure

	2 Background
	2.1 Software Testing
	2.1.1 Test Levels and Types
	2.1.2 Test Automation

	2.2 Machine Learning
	2.2.1 Types of Machine Learning
	2.2.2 Reinforcement Learning
	2.2.3 Policy Gradient Methods
	2.2.4 Feedforward Neural Networks
	2.2.5 Transformer Model

	2.3 Test Generation via Machine Learning
	2.3.1 Test Case Generation Approaches
	2.3.2 Natural Language Processing in Test Generation 
	2.3.3 Challenges of a Test Oracle


	3 Research Material and Methods
	3.1 Approach to Test Generation
	3.2 Test Generation Framework
	3.2.1 State and Action Space for a Web Application
	3.2.2 Reward Signal

	3.3 Algorithms
	3.3.1 Proximal Policy Optimization (PPO) 
	3.3.2 Online Decision Transformer (ODT)
	3.3.3 Training and Evaluation

	3.4 Benchmarking Environment
	3.4.1 Test Objectives as Reward Signals
	3.4.2 Selected Features and Actions


	4 Results
	4.1 Training with PPO
	4.2 Training with ODT
	4.3 Test Generation Evaluation

	5 Discussion
	5.1 The Framework
	5.2 Test Generation Optimization
	5.3 Future Research for Black-Box Test Generation

	6 Conclusion
	References
	A Experimental Details
	A.1 Proximal Policy optimization
	A.2 Online Decision Transformer
	A.3 Benchmarking Environment


